- Minadakis, N., Jigisha, J., Cornetti, L., Kunz, L., Mueller, M. C., Torriani, S. F., & Menardo, F. (2024). Genomic surveillance and molecular evolution of fungicide resistance in European populations of wheat powdery mildew. bioRxiv, 2024-10. (https://doi.org/10.1101/2024.10.24.619980).
- Jigisha, J., Ly, J., Minadakis, N., Freund, F., Kunz, L., Piechota, U., ... & Menardo, F. (2024). Population genomics and molecular epidemiology of wheat powdery mildew in Europe. bioRxiv, 2024-10. (https://doi.org/10.1101/2024.10.24.619980).
- Kunz, L., Jigisha, J., Menardo, F., Sotiropoulos, A. G., Zbinden, H., Zou, S., ... & Mueller, M. C. (2024). Avirulence depletion assay: combining R gene-mediated selection with bulk sequencing for rapid avirulence gene identification in wheat powdery mildew. bioRxiv, 2024-07. (https://doi.org/10.1101/2024.07.10.602895). Accepted, PLoS Pathogens.
- Goig, G. A., Menardo, F., Salaam-Dreyer, Z., Dippenaar, A., Streicher, E. M., Daniels, J., ... & Gagneux, S. (2023). Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. The Lancet Microbe, 4(7), e506-e515. (https://doi.org/10.1016/S2666-5247(23)00110-6).
- Zwyer, M., Rutaihwa, L. K., Windels, E., Hella, J., Menardo, F., Sasamalo, M., ... & Brites, D. (2023). Back-to-Africa introductions of Mycobacterium tuberculosis as the main cause of tuberculosis in Dar es Salaam, Tanzania. PLoS Pathogens, 19(4), e1010893. (https://doi.org/10.1371/journal.ppat.1010893).
- Menardo, F. (2022). Understanding drivers of phylogenetic clustering and terminal branch lengths distribution in epidemics of Mycobacterium tuberculosis. Elife, 11, e76780. (https://doi.org/10.7554/eLife.76780).
- Walker, T. M., Miotto, P., Köser, C. U., Fowler, P. W., Knaggs, J., Iqbal, Z., ... & Rodwell, T. C. (2022). The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis. Lancet Microbe 3: e265–e273. (https://doi.org/10.1016/S2666-5247(21)00301-3).
- Cox, H., Salaam-Dreyer, Z., Goig, G. A., Nicol, M. P., Menardo, F., Dippenaar, A., ... & Reinhard, M. Potential contribution of HIV during first-line tuberculosis treatment to subsequent rifampicin-monoresistant tuberculosis and acquired tuberculosis drug resistance in South Africa: a retrospective molecular epidemiology study. Lancet Microbe 2 (11)(2021) e584–e593. (https://doi.org/10.1016/S2666-5247(21)00144-0).
- Salaam-Dreyer, Z., Streicher, E. M., Sirgel, F. A., Menardo, F., Borrell, S., Reinhard, M., ... & Cox, H. (2021). Rifampicin-monoresistant tuberculosis is not the same as multidrug-resistant tuberculosis: A descriptive study from Khayelitsha, South Africa. Antimicrobial Agents and Chemotherapy, 65(11), 10-1128. (https://doi.org/10.1128/aac.00364-21).
- Coscolla, M., Gagneux, S., Menardo, F., Loiseau, C., Ruiz-Rodriguez, P., Borrell, S., ... & Brites, D. (2021). Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microbial Genomics, 7(2), 000477. (https://doi.org/10.1099/mgen.0.000477).
- Menardo, F., Rutaihwa, L. K., Zwyer, M., Borrell, S., Comas, I., Conceição, E. C., ... & Gagneux, S. (2021). Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim. F1000 Research, 10:60 (https://doi.org/10.12688/f1000research.28318.2).
- Menardo, F., Gagneux, S., & Freund, F. (2021). Multiple merger genealogies in outbreaks of Mycobacterium tuberculosis. Molecular Biology and Evolution, 38(1), 290-306. (https://doi.org/10.1093/molbev/msaa179).
- Ngabonziza, J. C. S., Loiseau, C., Marceau, M., Jouet, A., Menardo, F., Tzfadia, O., ... & Supply, P. (2020). A sister lineage of the Mycobacterium tuberculosis complex discovered in the African Great Lakes region. Nature Communications, 11(1), 2917. (https://doi.org/10.1038/s41467-020-16626-6).
- Loiseau, C.*, Menardo, F.*, Aseffa, A., Hailu, E., Gumi, B., Ameni, G., ... & Brites, D. (2020). An African origin for Mycobacterium bovis. Evolution, Medicine, and Public Health, 2020(1), 49-59. (https://doi.org/10.1093/emph/eoaa005). * Equal contribution
- Menardo, F., Duchêne, S., Brites, D., & Gagneux, S. (2019). The molecular clock of Mycobacterium tuberculosis. PLoS Pathogens, 15(9), e1008067. (https://doi.org/10.1371/journal.ppat.1008067).
- Meehan, C. J., Goig, G. A., Kohl, T. A., Verboven, L., Dippenaar, A., Ezewudo, M., ... & Van Rie, A. (2019). Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nature Reviews Microbiology, 17(9), 533-545. (https://doi.org/10.1038/s41579-019-0214-5).
- Bourras, S., Kunz, L., Xue, M., Praz, C. R., Müller, M. C., Kälin, C., ... & Keller, B. (2019). The AvrPm3-Pm3 effector-NLR interactions control both race-specific resistance and host-specificity of cereal mildews on wheat. Nature Communications, 10(1), 2292. (https://doi.org/10.1038/s41467-019-10274-1).
- Payne, J. L.*, Menardo, F.*, Trauner, A., Borrell, S., Gygli, S. M., Loiseau, C., ... & Hall, A. R. (2019). Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS biology, 17(5), e3000265. (https://doi.org/10.1371/journal.pbio.3000265). * Equal contribution
- Müller, M. C., Praz, C. R., Sotiropoulos, A. G., Menardo, F., Kunz, L., Schudel, S., ... & Wicker, T. (2019). A chromosome‐scale genome assembly reveals a highly dynamic effector repertoire of wheat powdery mildew. New Phytologist, 221(4), 2176-2189. (https://doi.org/10.1111/nph.15529).
- Rutaihwa, L. K., Menardo, F., Stucki, D., Gygli, S. M., Ley, S. D., Malla, B., ... & Gagneux, S. (2019). Multiple introductions of Mycobacterium tuberculosis lineage 2–Beijing into Africa over centuries. Frontiers in Ecology and Evolution, 7, 112. (https://doi.org/10.3389/fevo.2019.00112).
- Brites, D., Loiseau, C., Menardo, F., Borrell, S., Boniotti, M. B., Warren, R., ... & Gagneux, S. (2018). A new phylogenetic framework for the animal-adapted Mycobacterium tuberculosis complex. Frontiers in microbiology, 9, 2820. (https://doi.org/10.3389/fmicb.2018.02820).
- McNally, K. E., Menardo, F., Lüthi, L., Praz, C. R., Müller, M. C., Kunz, L., ... & Keller, B. (2018). Distinct domains of the AVRPM 3A2/F2 avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function. New Phytologist, 218(2), 681-695. (https://doi.org/10.1111/nph.15026).
- Praz, C. R., Menardo, F., Robinson, M. D., Müller, M. C., Wicker, T., Bourras, S., & Keller, B. (2018). Non-parent of origin expression of numerous effector genes indicates a role of gene regulation in host adaption of the hybrid triticale powdery mildew pathogen. Frontiers in plant science, 9, 49. (https://doi.org/10.3389/fpls.2018.00049).
- Menardo, F., Loiseau, C., Brites, D., Coscolla, M., Gygli, S. M., Rutaihwa, L. K., ... & Gagneux, S. (2018). Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC bioinformatics, 19, 1-8. (https://doi.org/10.1186/s12859-018-2164-8).
- Menardo, F., Praz, C. R., Wicker, T., & Keller, B. (2017). Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC evolutionary biology, 17, 1-14. (https://doi.org/10.1186/s12862-017-1064-2).
- Zeng, F. S., Menardo, F., Xue, M. F., Zhang, X. J., Gong, S. J., Yang, L. J., ... & Yu, D. Z. (2017). Transcriptome analyses shed new insights into primary metabolism and regulation of Blumeria graminis f. sp. tritici during conidiation. Frontiers in plant science, 8, 1146. (https://doi.org/10.3389/fpls.2017.01146).
- Menardo, F., Wicker, T., & Keller, B. (2017). Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS data. Genome Biology and Evolution, 9(2), 446-456. (https://doi.org/10.1093/gbe/evx008).
- Praz, C. R., Bourras, S., Zeng, F., Sánchez‐Martín, J., Menardo, F., Xue, M., ... & Keller, B. (2017). AvrPm2 encodes an RNase‐like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus. New Phytologist, 213(3), 1301-1314. (https://doi.org/10.1111/nph.14372).
-
Sucher, J.*, Menardo, F.*, Praz, C. R.*, Boni, R., Krattinger, S. G., & Keller, B. (2018). Transcriptional profiling reveals no response of fungal pathogens to the durable, quantitative Lr34 disease resistance gene of wheat. Plant Pathology, 67(4), 792-798. (https://doi.org/10.1111/ppa.12797). * Equal contribution
-
Menardo, F., Praz, C. R., Wyder, S., Ben-David, R., Bourras, S., Matsumae, H., ... & Keller, B. (2016). Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nature Genetics, 48(2), 201-205. (https://doi.org/10.1038/ng.3485).
-
Roffler, S., Menardo, F., & Wicker, T. (2015). The making of a genomic parasite-the Mothra family sheds light on the evolution of Helitrons in plants. Mobile DNA, 6, 1-13. (https://doi.org/10.1186/s13100-015-0054-4).
-
Bourras, S., McNally, K. E., Ben-David, R., Parlange, F., Roffler, S., Praz, C. R., ... & Keller, B. (2015). Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew. The Plant Cell, 27(10), 2991-3012. (https://doi.org/10.1105/tpc.15.00171).
-
Parlange, F., Roffler, S., Menardo, F., Ben-David, R., Bourras, S., McNally, K. E., ... & Keller, B. (2015). Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis f. sp. tritici on wheat Pm3 resistance alleles. Fungal Genetics and Biology, 82, 181-192. (https://doi.org/10.1016/j.fgb.2015.06.009).
-
Borovec, R.*, Menardo, F.*, & Meregalli, M.* (2013). A new genus of Entiminae from North Africa, supported by a phylogenetic analysis (Coleoptera: Curculionidae: Entiminae). Zoological Journal of the Linnean Society, 167(2), 243-258. (https://doi.org/10.1111/zoj.12001). * Equal contribution
-
Meregalli, M., Menardo, F., Klass, K., & Cervella, P. (2013). Phylogeny of the Saxifraga-associated species of Dichotrachelus (Insecta: Coleoptera: Curculionidae), with remarks on their radiation in the Alps. Arthropod Systematics & Phylogeny, 71, 43-68. (https://arthropod-systematics.arphahub.com/article/31765/download/pdf/).